
Week 9 - Friday

 What did we talk about last time?
 Unions
 Trees
 Time

 The time() function gives back the seconds since the Unix Epoch
 Its signature is:

 time_t is a signed 32-bit or 64-bit integer
 You can pass in a pointer to a time_t variable or save the return value

(both have the same result)
 Typically we pass in NULL and save the return value
 Include time.h to use time()

time_t seconds = time(NULL);
printf("%d seconds have passed since 1970", seconds);

time_t time(time_t* timePointer);

 Many time functions need different structs that can hold
things

 One such struct is defined as follows:

struct timeval
{

time_t tv_sec; // Seconds since Epoch
suseconds_t tv_usec; // Extra microseconds

};

 The gettimeofday() function offers a way to get higher precision
timing data

 Its signature is:

 From the previous slide, timeval has a tv_secs member which is the
same as the return value from time()

 It also has a tv_usec member which gives microseconds (millionths of a
second)

 The timezone pointer tz is obsolete and should have NULL passed into
it

 Include sys/time.h (not the same as time.h) to use this function

int gettimeofday(struct timeval *tv, struct timezone *tz);

 gettimeofday() is a reliable way to see how long something
takes

 Get the start time, the end time, and subtract them

double start;
double end;
struct timeval tv;
gettimeofday(&tv, NULL);
start = tv.tv_sec + tv.tv_usec/1000000.0;
someLongRunningFunction();
gettimeofday(&tv, NULL);
end = tv.tv_sec + tv.tv_usec/1000000.0;
printf("Your function took %.3f seconds", end – start);

 What if you wanted a data type that could hold any of three
different things
 But it would only hold one at a time…

 Yeah, you probably wouldn't want that
 But, back in the day when space was important, maybe you

would have
 This is exactly the problem that unions were designed to solve

 Unions look like structs
 Put the keyword union in place of struct

 There isn't a separate district and a state
 There's only space for the larger one
 In this case, 15 bytes (rounded up to 16) is the larger one

union Congressperson
{

int district; // Representatives
char state[15]; // Senators

};

 How can you tell what's in the union?
 You can't!

 You need to keep separate information that says what's in the
union

 Anonymous (unnamed) unions inside of structs are common
struct Congressperson
{

bool senator; // Which one?
union
{

int district; // Representatives
char state[15]; // Senators

};
};

 We could use such a struct to store terms in an algebraic expression
 Terms are of the following types
 Operands are double values
 Operators are char values: +, -, *, and /

typedef enum { OPERATOR, OPERAND } Type;
typedef struct
{

Type type;
union
{

double operand;
char operator;

};
} Term;

 A stack is a simple (but useful) data structure that has three
basic operations:
 Push Put an item on the top of the stack
 Pop Remove an item from the top of the stack
 Top Return the item currently on the top of the stack

 This kind of data structure is sometimes referred to as an
Abstract Data Type (ADT)

 We don't actually care how the ADT works, as long as it
supports certain basic operations

 We can implement a stack of double values

typedef struct
{

double* values;
int size;
int capacity;

} Stack;

 Initializing the stack isn't hard
 We give it an initial capacity (perhaps 5)
 We allocate enough space to hold that capacity
 We set the size to 0

Stack stack;
stack.capacity = 5;
stack.values = (double*)malloc(sizeof(double)*stack.capacity);
stack.size = 0;

 We can write simple methods that will do the operations of
the stack ADT

void push(Stack* stack, double value);

double pop(Stack* stack);

double top(Stack* stack);

 You might recall postfix notation from COMP 2100
 It's an unambiguous way of writing mathematical expressions

 Whenever you see an operand, put it on the stack
 Whenever you see an operator, pop the last two things off the

stack, perform the operation, then put the result back on the
stack

 The last thing should be the result
 Example: 5 6 + 3 – gives (5 + 6) – 3 = 8

 Finally, we have enough machinery to evaluate an array of
postfix terms

 Write the following function that does the evaluation:

 We'll have to see if each term is an operator or an operand and
interact appropriate with the stack

double evaluate(Term terms[], int size);

 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer

 We typically want a pointer that points to a certain kind of
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;

 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int* pointer;
pointer = &value; // Pointer has value's address

 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf ("%d", *pointer); // Prints 5
*pointer = 900; // value just changed!

 One of the most powerful (and most dangerous) qualities of
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointers, it jumps the
number of bytes in memory of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf ("%d", *value);
// What does it print? (not defined)

 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // exactly equivalent

// The following is not allowed!
value = &numbers;

 Well, no, they aren't
 But you can use array subscript notation ([]) to read and

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers + 2;

printf("%d", value[0]); // Prints 7
printf("%d", value[-2]); // Prints 3
value[2] = 19; // Changes 13 to 19

 What if you don't know what you're going to point at?
 You can use a void*, which is an address to….something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often
 malloc() returns a void*, but our compiler casts it for us
char s[] = "Hello World!";
void* address = s;
int* thingy = (int*)address;
printf("%d\n", *thingy);

 In general, data is passed by value
 This means that a variable cannot be changed for the function

that calls it
 Usually, that's good, since we don't have to worry about

functions screwing up our data
 It's annoying if we need a function to return more than one

thing, though
 Passing a pointer is equivalent to passing the original data by

reference

 Just as we can declare a pointer that points at a particular data
type, we can declare a pointer to a pointer

 Simply add another star

int value = 5;
int* pointer;
int** amazingPointer;
pointer = &value;
amazingPointer = &pointer;

 To get the command line values, use the following definition for main()

 Is that even allowed?
 Yes.

 You can name the parameters whatever you want, but argc and argv
are traditional
 argc is the number of arguments (argument count)
 argv are the actual arguments (argument values) as strings

int main(int argc, char** argv)
{

return 0;
}

 Before, we only talked about using getchar() (and command
line arguments) for input

 There is a function that parallels printf() called scanf()
 scanf() can read strings, int values, double values,

characters, and anything else you can specify with a % formatting
string

 You must pass in a pointer for the memory you want to read into

int number;
scanf("%d", &number);

 These are mostly what you would expect, from your experience with
printf()

Specifier Type

%d int

%u unsigned int

%o %x unsigned int (in octal for o or hex for x)

%hd short

%c char

%s null-terminated string

%f float

%lf double

%Lf long double

 Memory can be allocated dynamically using a function called malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc() with the number of bytes you want
 It returns a pointer to that memory, which you cast to the appropriate

type

int* data = (int*)malloc(sizeof(int));

 It is common to allocate an array of values dynamically
 The syntax is exactly the same as allocating a single value, but

you multiply the size of the type by the number of elements
you want

int i = 0;
int* array = (int*)malloc(sizeof(int)*100);
for (i = 0; i < 100; i++)
array[i] = i + 1;

 C is not garbage collected liked Java
 If you allocate something on the stack, it disappears when the

function returns
 If you allocate something on the heap, you have to deallocate

it with free()
 free() does not set the pointer to be NULL
 But you can afterwards

char* things = (char*)malloc (100);
free (things); // Should have used things first
things = NULL;

 One way to dynamically allocate a 2D array is to
allocate each row individually

 When finished, you can access table like any 2D
array

int** table = (int**)malloc (sizeof(int*)*rows);
int i = 0;

for (i = 0; i < rows; ++i)
table[i] = (int*)malloc (sizeof(int)*columns);

table[3][7] = 14;

table

Chunks of data
that could be
anywhere in
memory

 To free a 2D array allocated with the Ragged Approach
 Free each row separately
 Finally, free the array of rows

for(i = 0; i < rows; ++i)
free (table[i]);

free (table);

 Alternatively, you can allocate the memory for all rows at
once

 Then you make each row point to the right place

 When finished, you can still access table like any 2D array

int** table = (int**)malloc (sizeof(int*)*rows);
int* data = (int*)malloc (sizeof(int)*rows*columns);
int i = 0;

for (i = 0; i < rows; ++i)
table[i] = &data[i*columns];

table[3][7] = 14;

table

Contiguously allocated memory

 To free a 2D array allocated with the Contiguous Approach
 Free the big block of memory
 Free the array of rows
 No loop needed

free (table[0]);
free (table);

 Include the following headers:
 stdlib.h
 time.h

 Use rand() % n to get int values between 0 and n – 1
 Always call srand(time(NULL)) before your first call to
rand()

 Only call srand() once per program
 Seeding multiple times makes no sense and usually makes your

output much less random

 malloc() sees a huge range of free memory when the program
starts

 It uses a doubly linked list to keep track of the blocks of free
memory, which is perhaps one giant block to begin with

 As you allocate memory, a free block is often split up to make the
block you need

 The returned block knows its length
 The length is usually kept before the data that you use

Allocated SpaceLength

Returned pointer

 Here's a visualization of the free list
 When an item is freed, most implementations will try to

coalesce two neighboring free blocks to reduce fragmentation
 Calling free() can be time consuming

Head

AllocatedLFreeL P N FreeL P N

NULL NULL

 In C, the standard way to convert a string to an int is the
atoi() function
 #include <stdlib.h> to use it

#include <stdlib.h>
#include <stdio.h>

int main()
{

char* value = "3047";
int x = atoi(value);
printf("%d\n", x);
return 0;

}

 The portable way to convert an integer (or other
numerical types) to a string to use sprintf()
 It's like printf() except that it prints things to a string

buffer instead of the screen

char value[12]; // Has to be big enough
int x = 3047;
sprintf(value, "%d", x);

 A struct in C is:
 A collection of one or more variables
 Possibly of different types
 Grouped together for convenient handling.

 They were called records in Pascal
 They have similarities to a class in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files

struct name
{

type1 member1;
type2 member2;
type3 member3;
...

};

 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first

struct student bob;
struct student jameel;
struct point start;
struct point end;

 Once you have a struct variable, you can access its members
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);

 There are no constructors for structs in C
 You can initialize each element manually:

 Or you can use braces to initialize the entire struct at once (which I do not
encourage):

struct student julio;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;

struct student julio = {"Julio Iglesias", 3.9, 100009};

 It is possible to assign one struct to another

 Doing so is equivalent to using memcpy() to copy the memory of julio
into the memory of bob

 bob is still separate memory: it's not like copying references in Java

struct student julio;
struct student bob;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;
bob = julio;

 With a pointer in a struct, copying the struct will copy the pointer
but will not make a copy of the contents

 Changing one struct could change another

bob1.firstName = strdup("Bob");
bob1.lastName = strdup("Newhart");
bob2 = bob1;
strcpy(bob2.lastName, "Hope");
printf("Name: %s %s\n", bob1.firstName, bob1.lastName);
//prints Bob Hope

struct person
{

char* firstName;
char* lastName;

};
struct person bob1;
struct person bob2;

 We could dereference a struct pointer and then use the dot to
access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be

written as an arrow (->)

struct student* studentPointer = (struct student*)
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;

 If you pass a struct directly to a function, you are passing it by
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and
so that its members can be changed

void flip(struct point* value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}

 Always put a semicolon at the end of a struct declaration
 Don't put constructors or methods inside of a struct
 C doesn't have them

 Assigning one struct to another copies the memory of one
into the other

 Pointers to struct variables are usually passed into functions
 Both for efficiency and so that you can change the data inside

 The typedef command allows you to make an alias for an
existing type

 You type typedef, the type you want to alias, and then the
new name

 Don't overuse typedef
 It is useful for types like time_t which can have different

meanings in different systems

typedef int SUPER_INT;

SUPER_INT value = 3; // has type int

 The typedef command is commonly used with structs
 Often it is built into the struct declaration process

 It allows the programmer to leave off the stupid struct keyword
when declaring variables

 The type defined is actually struct _wombat
 We can refer to that type as wombat

typedef struct _wombat
{

char name[100];
double weight;

} wombat;

wombat martin;

 To create named constants with different values, type enum and
then the names of your constants in braces

 Then in your code, you can use these values (which are stored as
integers)

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY };

int day = FRIDAY;
if(day == SUNDAY)

printf("My 'I don't have to run' day");

 You can even specify the values in the enum

 If you assign values, it is possible to make two or more of the constants have
the same value (usually bad)

 A common reason that values are assigned is so that you can do bitwise
combinations of values

enum { ANIMAL = 7, MINERAL = 9, VEGETABLE = 11 };

enum { PEPPERONI = 1, SAUSAGE = 2, BACON = 4, MUSHROOMS = 8,
PEPPER = 16, ONIONS = 32, OLIVES = 64, EXTRA_CHEESE = 128 };

int toppings = PEPPERONI | ONIONS | MUSHROOMS;

 We can use this definition for our node for singly linked lists

 Somewhere, we will have the following variable to hold the beginning of
the list

typedef struct _Node
{

int data;
struct _Node* next;

} Node;

Node* head = NULL;

 We can use this definition for our node for binary search trees

 Somewhere, we will have the following variable to hold the root of the
tree

Tree* root = NULL;

typedef struct _Tree
{

int data;
struct _Tree* left;
struct _Tree* right;

} Tree;

 What if you wanted a data type that could hold any of three
different things

 Back in the day when space was important, people wanted
such things

 That's why they created unions, which look like structs but
only have enough room for the largest thing inside of them

 They're only designed to store one thing at a time

 Unions look like structs
 Put the keyword union in place of struct

 There isn't a separate district and a state
 There's only space for the larger one
 In this case, 15 bytes (rounded up to 16) is the larger one

union Congressperson
{

int district; // Representatives
char state[15]; // Senators

};

 In the systems programming world, there are two different
kinds of time that are useful

 Real time
 This is also known as wall-clock time or calendar time
 It's the human notion of time that we're familiar with

 Process time
 Process time is the amount of time your process has spent on the

CPU
 There is often no obvious correlation between process time and real

time (except that process time is never more than real time elapsed)

 The time() function gives back the seconds since the Unix Epoch
 Its signature is:

 time_t is a signed 32-bit or 64-bit integer
 You can pass in a pointer to a time_t variable or save the return value

(both have the same result)
 Typically we pass in NULL and save the return value
 Include time.h to use time()

time_t seconds = time(NULL);
printf("%d seconds have passed since 1970", seconds);

time_t time(time_t* timePointer);

 Exam 2!

 Finish Project 4
 Due tonight by midnight!

 Review for Exam 2

	COMP 2400
	Last time
	Questions?
	Project 4
	Back to Time
	time()
	Time structures
	gettimeofday()
	Timing with gettimeofday()
	Back to Unions
	Unions
	Declaring unions
	What's in the union?
	Operands and operators
	Stack
	Stack of double values
	Stack initialization
	Push, pop, and top
	Postfix notation
	Evaluate postfix
	Review
	Pointers
	Declaration of a pointer
	Reference operator
	Dereference operator
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	void pointers
	Functions that can change arguments
	Pointers to pointers
	Change main() to get command line arguments
	scanf()
	Format specifiers
	Dynamic Memory Allocation
	malloc()
	Allocating arrays
	free()
	Ragged Approach
	Ragged Approach in memory
	Freeing the Ragged Approach
	Contiguous Approach
	Contiguous Approach in memory
	Freeing the Contiguous Approach
	Rules for random numbers
	How does malloc() work?
	Free list
	String to integer
	Integer to string
	Structs
	Anatomy of a struct
	Declaring a struct variable
	Accessing members of a struct
	Initializing structs
	Assigning structs
	Dangers with pointers in structs
	Arrow notation
	Passing structs to functions
	Gotchas
	typedef
	typedef with structs
	Using enum
	Specifying values
	An example linked list node struct
	Example BST node struct
	Unions
	Declaring unions
	Time
	time()
	Upcoming
	Next time…
	Reminders

