
Week 9 - Friday



 What did we talk about last time?
 Unions
 Trees
 Time









 The time() function gives back the seconds since the Unix Epoch
 Its signature is:

 time_t is a signed 32-bit or 64-bit integer
 You can pass in a pointer to a time_t variable or save the return value 

(both have the same result)
 Typically we pass in NULL and save the return value
 Include time.h to use time()

time_t seconds = time(NULL);
printf("%d seconds have passed since 1970", seconds);

time_t time(time_t* timePointer);



 Many time functions need different structs that can hold 
things

 One such struct is defined as follows:

struct timeval
{

time_t tv_sec; // Seconds since Epoch
suseconds_t tv_usec; // Extra microseconds

};



 The gettimeofday() function offers a way to get higher precision 
timing data

 Its signature is:

 From the previous slide, timeval has a tv_secs member which is the 
same as the return value from time()

 It also has a tv_usec member which gives microseconds (millionths of a 
second)

 The timezone pointer tz is obsolete and should have NULL passed into 
it

 Include sys/time.h (not the same as time.h) to use this function

int gettimeofday(struct timeval *tv, struct timezone *tz);



 gettimeofday() is a reliable way to see how long something 
takes

 Get the start time, the end time, and subtract them

double start;
double end;
struct timeval tv;
gettimeofday(&tv, NULL);
start = tv.tv_sec + tv.tv_usec/1000000.0;
someLongRunningFunction();
gettimeofday(&tv, NULL);
end = tv.tv_sec + tv.tv_usec/1000000.0;
printf("Your function took %.3f seconds", end – start);





 What if you wanted a data type that could hold any of three 
different things
 But it would only hold one at a time…

 Yeah, you probably wouldn't want that
 But, back in the day when space was important, maybe you 

would have
 This is exactly the problem that unions were designed to solve



 Unions look like structs
 Put the keyword union in place of struct

 There isn't a separate district and a state
 There's only space for the larger one
 In this case, 15 bytes (rounded up to 16) is the larger one

union Congressperson
{

int district; // Representatives
char state[15]; // Senators

};



 How can you tell what's in the union?
 You can't!

 You need to keep separate information that says what's in the 
union

 Anonymous (unnamed) unions inside of structs are common
struct Congressperson
{

bool senator; // Which one?
union
{

int district; // Representatives
char state[15]; // Senators

};
};



 We could use such a struct to store terms in an algebraic expression
 Terms are of the following types
 Operands are double values
 Operators are char values: +, -, *, and /

typedef enum { OPERATOR, OPERAND } Type;
typedef struct
{

Type type;
union
{

double operand;
char operator;

};
} Term;



 A stack is a simple (but useful) data structure that has three 
basic operations:
 Push Put an item on the top of the stack
 Pop Remove an item from the top of the stack
 Top Return the item currently on the top of the stack

 This kind of data structure is sometimes referred to as an 
Abstract Data Type (ADT)

 We don't actually care how the ADT works, as long as it 
supports certain basic operations



 We can implement a stack of double values

typedef struct
{

double* values;
int size;
int capacity;

} Stack;



 Initializing the stack isn't hard
 We give it an initial capacity (perhaps 5)
 We allocate enough space to hold that capacity
 We set the size to 0

Stack stack;
stack.capacity = 5;
stack.values = (double*)malloc(sizeof(double)*stack.capacity );
stack.size = 0;



 We can write simple methods that will do the operations of 
the stack ADT

void push(Stack* stack, double value);

double pop(Stack* stack);

double top(Stack* stack);



 You might recall postfix notation from COMP 2100
 It's an unambiguous way of writing mathematical expressions

 Whenever you see an operand, put it on the stack
 Whenever you see an operator, pop the last two things off the 

stack, perform the operation, then put the result back on the 
stack

 The last thing should be the result
 Example: 5 6 + 3 – gives (5 + 6) – 3 = 8



 Finally, we have enough machinery to evaluate an array of 
postfix terms

 Write the following function that does the evaluation:

 We'll have to see if each term is an operator or an operand and 
interact appropriate with the stack

double evaluate(Term terms[], int size);





 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O 

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer



 We typically want a pointer that points to a certain kind of 
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;



 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int* pointer;
pointer = &value; // Pointer has value's address



 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the 

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf ("%d", *pointer); // Prints 5
*pointer = 900; // value just changed!



 One of the most powerful (and most dangerous) qualities of 
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from)  a pointers, it jumps the 
number of bytes in memory  of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf ("%d", *value);
// What does it print? (not defined)



 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // exactly equivalent

// The following is not allowed!
value = &numbers;



 Well, no, they aren't
 But you can use array subscript notation ([]) to read and 

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers + 2;

printf("%d", value[0] ); // Prints 7
printf("%d", value[-2] ); // Prints 3
value[2] = 19; // Changes 13 to 19



 What if you don't know what you're going to point at?
 You can use a void*, which is an address to….something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often
 malloc() returns a void*, but our compiler casts it for us
char s[] = "Hello World!";
void* address = s; 
int* thingy = (int*)address;
printf("%d\n", *thingy);



 In general, data is passed by value
 This means that a variable cannot be changed for the function 

that calls it
 Usually, that's good, since we don't have to worry about 

functions screwing up our data
 It's annoying if we need a function to return more than one 

thing, though
 Passing a pointer is equivalent to passing the original data by 

reference



 Just as we can declare a pointer that points at a particular data 
type, we can declare a pointer to a pointer

 Simply add another star

int value = 5;
int* pointer;
int** amazingPointer;
pointer = &value;
amazingPointer = &pointer;



 To get the command line values, use the following definition for main()

 Is that even allowed?
 Yes.

 You can name the parameters whatever you want, but argc and argv
are traditional
 argc is the number of arguments (argument count)
 argv are the actual arguments (argument values) as strings

int main(int argc, char** argv)
{

return 0;
}



 Before, we only talked about using getchar() (and command 
line arguments) for input

 There is a function that parallels printf() called scanf()
 scanf() can read strings, int values, double values, 

characters, and anything else you can specify with a % formatting 
string

 You must pass in a pointer for the memory you want to read into

int number;
scanf("%d", &number);



 These are mostly what you would expect, from your experience with 
printf()

Specifier Type

%d int

%u unsigned int

%o %x unsigned int (in octal  for o or hex for x)

%hd short

%c char

%s null-terminated string

%f float

%lf double

%Lf long double





 Memory can be allocated dynamically using a function called malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc() with the number of bytes you want
 It returns a pointer to that memory, which you cast to the appropriate 

type

int* data = (int*)malloc(sizeof(int));



 It is common to allocate an array of values dynamically
 The syntax is exactly the same as allocating a single value, but 

you multiply the size of the type by the number of elements 
you want

int i = 0;
int* array = (int*)malloc(sizeof(int)*100);
for (i = 0; i < 100; i++)
array[i] = i + 1;



 C is not garbage collected liked Java
 If you allocate something on the stack, it disappears when the 

function returns
 If you allocate something on the heap, you have to deallocate

it with free()
 free() does not set the pointer to be NULL
 But you can afterwards

char* things = (char*)malloc (100);
free (things); // Should have used things first
things = NULL;



 One way to dynamically allocate a 2D array is to 
allocate each row individually

 When finished, you can access table like any 2D 
array

int** table = (int**)malloc (sizeof(int*)*rows);
int i = 0;

for (i = 0; i < rows; ++i)
table[i] = (int*)malloc (sizeof(int)*columns);

table[3][7] = 14;



table

Chunks of data 
that could be 
anywhere in 
memory



 To free a 2D array allocated with the Ragged Approach
 Free each row separately
 Finally, free the array of rows

for(i = 0; i < rows; ++i)
free (table[i]);

free (table);



 Alternatively, you can allocate the memory for all rows at 
once

 Then you make each row point to the right place

 When finished, you can still access table like any 2D array

int** table = (int**)malloc (sizeof(int*)*rows);
int* data = (int*)malloc (sizeof(int)*rows*columns);
int i = 0;

for (i = 0; i < rows; ++i)
table[i] = &data[i*columns];

table[3][7] = 14;



table

Contiguously allocated memory



 To free a 2D array allocated with the Contiguous Approach
 Free the big block of memory
 Free the array of rows
 No loop needed

free (table[0]);
free (table);



 Include the following headers:
 stdlib.h
 time.h

 Use rand() % n to get int values between 0 and n – 1
 Always call srand(time(NULL)) before your first call to 
rand()

 Only call srand() once per program
 Seeding multiple times makes no sense and usually makes your 

output much less random



 malloc() sees a huge range of free memory when the program 
starts

 It uses a doubly linked list to keep track of the blocks of free 
memory, which is perhaps one giant block to begin with

 As you allocate memory, a free block is often split up to make the 
block you need

 The returned block knows its length
 The length is usually kept before the data that you use

Allocated SpaceLength

Returned pointer



 Here's a visualization of the free list
 When an item is freed, most implementations will try to 

coalesce two neighboring free blocks to reduce fragmentation
 Calling free() can be time consuming

Head

AllocatedLFreeL P N FreeL P N

NULL NULL



 In C, the standard way to convert a string to an int is the 
atoi() function
 #include <stdlib.h> to use it

#include <stdlib.h>
#include <stdio.h>

int main()
{

char* value = "3047";
int x = atoi(value);
printf("%d\n", x);
return 0;

}



 The portable way to convert an integer (or other 
numerical types) to a string to use sprintf()
 It's like printf() except that it prints things to a string 

buffer instead of the screen

char value[12];  // Has to be big enough
int x = 3047;
sprintf( value, "%d", x );



 A struct in C is:
 A collection of one or more variables
 Possibly of  different types
 Grouped together for convenient  handling.  

 They were called records in Pascal
 They have similarities to a class in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files



struct name
{ 

type1 member1;
type2 member2;
type3 member3;
...

};



 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first

struct student bob;
struct student jameel;
struct point start;
struct point end;



 Once you have a struct variable, you can access its members 
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);



 There are no constructors for structs in C
 You can initialize each element manually:

 Or you can use braces to initialize the entire struct at once (which I do not 
encourage):

struct student julio;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;

struct student julio = {"Julio Iglesias", 3.9, 100009};



 It is possible to assign one struct to another

 Doing so is equivalent to using memcpy() to copy the memory of julio
into the memory of bob

 bob is still separate memory: it's not like copying references in Java

struct student julio;
struct student bob;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;
bob = julio;



 With a pointer in a struct, copying the struct will copy the pointer 
but will not make a copy of the contents

 Changing one struct could change another

bob1.firstName = strdup("Bob");
bob1.lastName = strdup("Newhart");
bob2 = bob1;
strcpy(bob2.lastName, "Hope");
printf("Name: %s %s\n", bob1.firstName, bob1.lastName);
//prints Bob Hope

struct person
{

char* firstName;
char* lastName;

};
struct person bob1;
struct person bob2;



 We could dereference a struct pointer and then use the dot to 
access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be 

written as an arrow (->)

struct student* studentPointer = (struct student*) 
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;



 If you pass a struct directly to a function, you are passing it by 
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and 
so that its members can be changed

void flip(struct point* value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}



 Always put a semicolon at the end of a struct declaration
 Don't put constructors or methods inside of a struct
 C doesn't have them

 Assigning one struct to another copies the memory of one 
into the other

 Pointers to struct variables are usually passed into functions
 Both for efficiency and so that you can change the data inside



 The typedef command allows you to make an alias for an 
existing type

 You type typedef, the type you want to alias, and then the 
new name

 Don't overuse typedef
 It is useful for types like time_t which can have different 

meanings in different systems

typedef int SUPER_INT;

SUPER_INT value = 3; // has type int



 The typedef command is commonly used with structs
 Often it is built into the struct declaration process

 It allows the programmer to leave off the stupid struct keyword 
when declaring variables

 The type defined is actually struct _wombat
 We can refer to that type as wombat

typedef struct _wombat
{

char name[100];
double weight;

} wombat;

wombat martin;



 To create named constants with different values, type enum and 
then the names of your constants in braces

 Then in your code, you can use these values (which are stored as 
integers)

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 
SATURDAY };

int day = FRIDAY;
if(day == SUNDAY)

printf("My 'I don't have to run' day");



 You can even specify the values in the enum

 If you assign values, it is possible to make two or more of the constants have 
the same value (usually bad)

 A common reason that values are assigned is so that you can do bitwise 
combinations of values

enum { ANIMAL = 7, MINERAL = 9, VEGETABLE = 11 };

enum { PEPPERONI = 1, SAUSAGE = 2, BACON = 4, MUSHROOMS = 8, 
PEPPER = 16, ONIONS = 32, OLIVES = 64, EXTRA_CHEESE = 128 };

int toppings = PEPPERONI | ONIONS | MUSHROOMS;



 We can use this definition for our node for singly linked lists

 Somewhere, we will have the following variable to hold the beginning of 
the list

typedef struct _Node
{

int data;
struct _Node* next;

} Node;

Node* head = NULL;



 We can use this definition for our node for binary search trees

 Somewhere, we will have the following variable to hold the root of the 
tree

Tree* root = NULL;

typedef struct _Tree
{

int data;
struct _Tree* left;
struct _Tree* right;

} Tree;



 What if you wanted a data type that could hold any of three 
different things

 Back in the day when space was important, people wanted 
such things

 That's why they created unions, which look like structs but 
only have enough room for the largest thing inside of them

 They're only designed to store one thing at a time



 Unions look like structs
 Put the keyword union in place of struct

 There isn't a separate district and a state
 There's only space for the larger one
 In this case, 15 bytes (rounded up to 16) is the larger one

union Congressperson
{

int district; // Representatives
char state[15]; // Senators

};



 In the systems programming world, there are two different 
kinds of time that are useful

 Real time
 This is also known as wall-clock time or calendar time
 It's the human notion of time that we're familiar with

 Process time
 Process time is the amount of time your process has spent on the 

CPU
 There is often no obvious correlation between process time and real 

time (except that process time is never more than real time elapsed)



 The time() function gives back the seconds since the Unix Epoch
 Its signature is:

 time_t is a signed 32-bit or 64-bit integer
 You can pass in a pointer to a time_t variable or save the return value 

(both have the same result)
 Typically we pass in NULL and save the return value
 Include time.h to use time()

time_t seconds = time(NULL);
printf("%d seconds have passed since 1970", seconds);

time_t time(time_t* timePointer);





 Exam 2!



 Finish Project 4
 Due tonight by midnight!

 Review for Exam 2
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